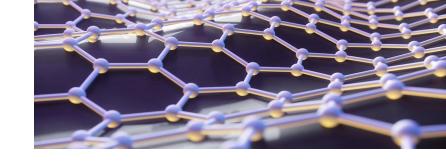

Master NANOSCIENCES, NANOTECHNOLOGIES

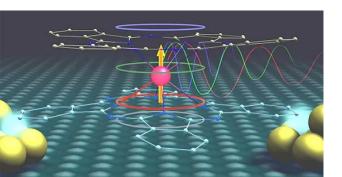
International Master in English

M1 NanoPhysics & Quantum Physics

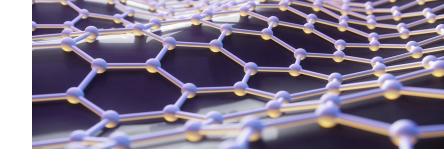
M2 NanoPhysics


M2 IMN

M2 Quantum Information & Quantum Engineering



M1 NanoPhysics & Quantum Physics


- High-level Master training at the crossing between **fundamental** physics and its **applications** in nanotechnologies and quantum technologies.
- Provide a solid knowledge in nanophysics and quantum physics for students willing to pursue a Master 2 and a **PhD** in these fields.
- **Multi-disciplinary** training with courses from other fields of nanosciences such as soft matter, biophysics and nanochemistry.
- Open to students with a Bachelor in physics (or equivalent) from national and international origin.

Contact: hermann.sellier@neel.cnrs.fr

M1 NanoPhysics & Quantum Physics

	Semester 7	Semester 8
Core courses	Quantum physics Solid state physics I Semiconductor physics Magnetism and nanosciences Optics	Solid state physics II Modeling and numerical simulations Physical measurement by local probes Nanosciences I
Elective courses	Statistical physics Mechanics at the micro & nano-scale Surface and interface Image and signal processing Electrochemistry Professional insertion French as foreign language	Nanosciences II Quantum labworks Quantum statistics and interactions Molecular electronics and magnetism Physics of 2D nanomaterials Molecular photophysics Ray-matter interaction Materials science Thin Films
		Research internship (2 months)

web site → click here

web site → click here

M2 NanoPhysics

Motivations

- Fundamental and applied courses on the physical properties, growth, advanced characterization, and applications of nanostructures.
- Specialization in nanophysics, within the broader field of nanosciences and with knowledge on quantum applications.
- Pluri-disciplinary experimental training on top-levels equipment of research laboratories and clean-room facilities.
- Preparation to a PhD in a research laboratory or a nanotech R&D company.

Pre-requisites

- Open to national and international students.
- Students with a Master 1 or a 4-year Bachelor in Physics.
- Courses on Quantum Physics, Solid State Physics, Semiconductors, Optics.

web site → click here

M2 NanoPhysics

Core courses

Elaboration of nanostructures and physics of 2D materials Advanced characterization techniques for nanostructures From nanofabrication in research labs to VLSI

Applications

Advanced semiconductor devices Nanophotonics and plasmonics Nanomagnetism and spintronics Nanomaterials and energy

Specializing courses

- Quantum thematic courses:

Quantum condensed matter Quantum optics

- broadening courses:

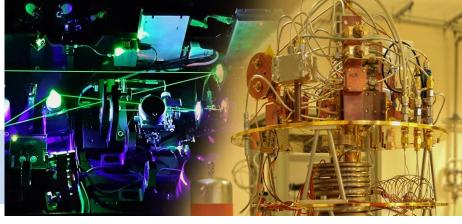
Active matter Machine statistical learning 2 choices

choice

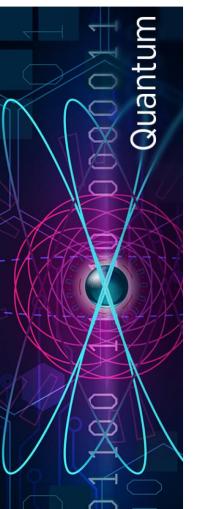
Thematic and interdisciplinary projects Seminars + Modeling or Research training

Master thesis

5-months internship in a research lab



Contact: helene.bea@cea.fr



M2 QIQE

Quantum Information & Quantum Engineering

web site → click here

Motivations

- Working on fundamental quantum physics and/or participate to the emergence of Quantum Technologies.
- Enhancing connections between education, research and industry working on Quantum Technologies in adequation with national and European programs.
- Lectures, practicals, seminars covering the whole spectrum from fundamental quantum physics to implementations of quantum bits and algorithms.
- Preparation to a PhD in a research laboratory, a start-up, or a R&D company.

Pre-requisites

- Open to national and international students.
- Students with a Master 1 or a 4-year Bachelor in Physics.
- Courses on Quantum Physics, Solid State Physics, Semiconductors, Optics.

M2 QIQE

Quantum Information & Quantum Engineering

Fundamentals

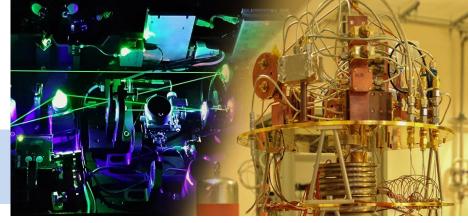
Open quantum systems Quantum condensed matter Quantum optics

Implementations

Solid state qubits

Quantum algorithms

Nanomagnetism and spintronics

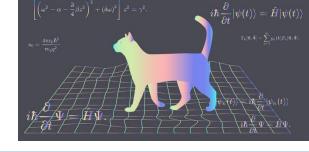

Advanced instrumentations

Microwave and cryoelectronics From nanofabrication in research labs to VLSI

Thematic and interdisciplinary projects Seminars, Simulations, Practicals (IBM-Q)

Master thesis

5-months internship in a research lab



web site → click here

Graduate School thematic program « Quantum »

Objective:

Training the future generation of students in the field of quantum technologies including communication, computing, simulation, sensing, metrology

Quantum Engineering and Hardware:

Coherent manipulation of quantum objects

Quantum Information and Software:

Processing and transfer of quantum information

Quantum Materials:

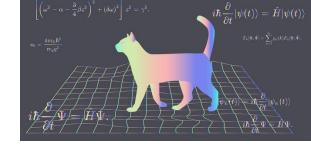
Collective quantum effects and new states of matter

Enabling Technologies:

Elaboration, cryogenics, cryo-electronics, spintronics

Quantum Engineering Quantum devices

Read-out and coherent manipulation of qbits (spin, photon, electron) Quantum information and Communication etc...


Enabling technologies

Cryo-CMOS, quantum amplifiers spintronics, cryogeny, lasers, micro-waves, ultra-fast electronics...

Quantum Materials

Non conventional magnetism superconductivity, 2D materials, spin chains, etc,...

Graduate School thematic program « Quantum »

Program for excellent students with international origin

Delivery of a « Quantum label » in addition to the Master diploma

Two year program with **dedicated** lectures and trainings

First year (M1)

- Quantum labworks: superconductivity, 2D materials, quantum optics,...
- Quantum statistics and interactions: second quantization, light-matter interaction,...

Second year (M2)

- Quantum condensed matter: theory of superconductivity, quantum transport,...
- Quantum optics: cavity quantum electrodynamics, quantum cryptography,...

Two-year « Quantum » scholarship from UGA Graduate School

For students with non-French high-school diploma Follow this link to apply

Contact: david.ferrand@neel.cnrs.fr

M1 NanoPhysics & Quantum Physics

M2 NanoPhysics

M2 Quantum Information & Quantum Engineering

Graduate School thematic program « Quantum »

Presentation and answer to questions during the **UGA Master Forum**

Thursday the 3rd of March 2022 from 12:00 to 13:00 and from 16:00 to 17:00

Zoom link:

https://univ-grenoble-alpes-fr.zoom.us/j/95035879831?pwd=dkViMGF2S21IZERYYTd5Y21XOGVDUT09